一切耗氧生物的生存、生长和繁殖都离不开氧气,空气中氧气的含量高而稳定,约占21%,因此陆地上生物鲜有缺氧威胁;而水体中的溶解氧却量少而多变;一般情况下淡水中饱和溶氧量只相当于空气中氧气含量的1/20,海水中更少,因而水中的溶氧量成为水生动物生命现象和生命过程的一个限制性因素,是水产养殖中人们最为关注的重要因子之一。

一、概念及种类

蓝藻是藻类生物,又叫蓝(绿)藻。大多数蓝藻的细胞壁外面有胶质衣,因此又叫枯藻。在所有藻类生物中,蓝藻是最简单、最原始的一种。

然而在养殖生产实践中,长期以来由于普遍缺乏对水体溶氧进行及时有效监测手段,对水体溶解氧变化的潜在危害认识不足,很多养殖群体顾及增氧成本,把养殖生物有无浮头现象作为水体溶氧是否充足的判断标准,看到浮头以后才采取增氧措施,这实际上是把增氧当作一种“救命”措施;还有些养殖群体担心水体缺氧对养殖生物的影响,不考虑实际溶解氧状况,对养殖水环境持续增氧,使水体氧浓度一直处于高位状态。这些都是非科学的管理方法,常常导致不必要的损失或降低潜在的收益。

微生物制剂是将自然界有益细菌通过人工筛选培育,再经过生物工程工厂化生产出来,用于生态调控及动物营养保健的活菌制剂。现在市场上销售的这类产品名目繁多,如EM菌、光合细菌、芽孢杆菌、硝化细菌、乳酸菌、酵母菌等,都属微生物制剂的同类产品。就有益菌种来讲,美国发布了40种安全有效的有益菌种,我国农业部允许使用的有益菌种有干酪乳杆菌、嗜乳酸杆菌、乳链球菌、枯草芽孢杆菌、纳豆芽孢杆菌、啤酒酵母菌、沼泽红假单胞菌等12种。依活菌种的组成,有单一菌制剂和复合菌制剂。市售的多为复合菌制剂,只是其中的菌种种类和数量有别而异。

蓝藻水华是由蓝藻短时间的爆发性增殖产生的一种现象。水体中蓝藻水华一般是多个因子综合影响的结果,其发生机制和过程在科学界尚未弄清楚,因此现在还无法做到准确预测蓝藻水华发生的时间和地点。

1 溶氧在水产养殖中的作用

应用于水产养殖上的微生态制剂按用途可分为两大类:

但水华作为蓝藻种群数量超常规积累的现象,其发展发生也有一定规律可循。水华的发生是内因和外因共同作用的结果。水华发生的外因是影响蓝藻种群数量的物理、化学和生物因子,内因则是蓝藻的生物学特性。

1提供养殖动物生命活动所必需的氧气

一类是内服以提高鱼虾免疫力的饲料微生态添加剂,目前应用较多的菌类有乳酸菌、芽孢杆菌、酵母菌等;

一、蓝藻水华发生的内因

2有利于耗氧性微生物生长繁殖,促进有机物降解

另一类是用以改良水质的微生态调控剂,主要菌类有光合细菌、芽孢杆菌、硝化细菌等。各类菌有其自身特性,使用时要针对不同目的采用不同方法,才能最大限度地发挥其功效。

内因是其在长期进化过程中形成的生理生态特征。蓝藻是原核生物,地球上最古老的光合放氧生物,形成于35亿年前,也是大气臭氧层形成的主要贡献者,对环境有很强的适应性。

3减少有毒、有害物质的作用

二、微生物制剂作用与特点(一)对水体的作用微生物制剂可有效降低养殖水质中亚硝酸盐、氨氮、硫化氢等浓度,抑制水体中有害微生物繁殖和生长,净化水质。(二)对养殖动物的作用微生物制剂可使养殖动物提高机体免疫力。防止水产养殖动物体内有害物质产生。同时,转化养殖动物肠道、血液及粪便中有害物质浓度,降低有害物质在机体内的累积,有利于机体的健康。(三)降低成本,保护环境微生物制剂具有投资小、效益高、使用方便等优点。既能全池泼洒,也能做为饲料添加剂。无毒、无害、无药物残留,长期使用可以减少养殖过程中抗生素的使用量,减少病害发生,排放的污水对环境污染也较小。三、微生态制剂用于调控水质的使用原则自然水体存在一定的细菌生态平衡系统,施用微生态制剂是人为改变条件,定向培育优势菌群并发挥其作用,形成新的动态平衡。在微生态制剂的使用过程中,首先要根据水体的理化因子正确选用菌种;其次,施放微生态制剂要达到一定的浓度、确保水体中活菌数达到一定数量,并营造适合培育菌种的生长条件,使之尽早形成并维持优势菌群,以取得良好的使用效果。四、主要菌属的特性及使用方法1、光合细菌1.1光合细菌的特性在水产养殖中应用较多的有红螺菌科的荚膜红、沼泽红、球形菌、深红红螺菌等种类,大多数种类为厌氧性或兼性厌氧性。光合细菌细胞内含有类似于植物叶绿素的细菌叶绿素,在无氧和光照条件下,利用水体中有机物进行不产氧的光合作用。1.2
光合细菌净化水质的机理光合细菌细胞内含有类似于植物叶绿素的细菌叶绿素,在无氧和光照条件下,利用水体中鱼虾残饵及排泄物等有机物进行不产氧的光合作用,合成大量菌体。所以其增氧机制是通过同化水中有机物,减少有机耗氧来实现的。光合细菌还能以硝酸盐或亚硝酸盐作为生理代谢上的氧化剂,吸收利用水中的硝酸盐及亚硝酸盐。不少光合细菌还利用硫化物。以上机制形成了光合细菌很强的净化水质的功能。1.3光合细菌的使用和保存在水温28℃~36℃
,pH偏碱(7.5~8.5)时,光合细菌生长较好。对有机物浓度较高、底质较差、有一定透明度的浅水池使用效果明显。这是因为有机物高的底质易形成无氧条件,有一定透明度满足光合细菌大量生长、繁殖的要求。养殖户在使用光合细菌改善水质时,可选在晴天上午进行,光合细菌用沸石粉吸附后泼洒能提高使用效果。由于水中光合细菌的浓度会因换水及生物吞食而降低,不能稳定地发挥净化水质的功能,已有人尝试将光合细菌固定化并应用于试验和生产中,使净化水质的效果得到进一步的改善。由于光合细菌制品多为活菌液,为保证使用效果,应注意尽量使用新鲜菌液以保证活菌数。成品菌液应先逐渐降温而后存放在温度较低(15℃
以下)并有一定光照的地方(每天2
h以上),然后逐渐减少光照,再置于阴凉避光处。菌液开始发黑并有恶臭味可能是活菌死亡腐败所致,使用效果不佳。2、芽孢杆菌2.1
芽孢杆菌的特性芽孢杆菌,革兰氏染色阳性,是普遍存在的一类好气性细菌,多属芽孢杆菌属。该类菌无毒性,能分泌出活性强的蛋白酶等多种酶类,在其生命过程中又能以孢子体形式存在,易于生产和保存,作为饲料微生态添加剂和水体微生态调控剂都有广阔前景。2.2
芽孢杆菌的作用机理芽孢杆菌作为水体微生态调控剂的作用机理,是通过经筛选出有类似于硝化细菌功能的菌株,可以降低水体中硝酸盐、亚硝酸盐的含量,从而起到改善水质的作用。芽孢杆菌还可以通过消灭病原体或是至少减少了病原体的影响来改善水质。实验发现添加芽孢杆菌控制弧菌等致病菌比加抗生素更好,许多不同的抗生素是由一系列的芽孢杆菌所产生,许多细菌在同一时间不可能对所有抗生素都有抗性基因,特别是如果它们以前未曾与芽孢杆菌有过接触时。芽孢杆菌能分泌许多降解粘液和生物膜的酶,使得芽孢杆菌及其产生的抗生素能渗透进革兰氏阴性菌的粘液层;另外,芽孢杆菌与其它细菌竞争营养并且抑制其快速生长。基于以上功能,加上芽孢杆菌在生产过程中易保存等特点,芽孢杆菌制剂正成为目前研究和生产应用的热点。2.3
芽孢杆菌的施用芽孢杆菌在保存期间以芽孢的形式存在,养殖户在使用前,可用一定配制好的培养基活化、增殖,然后泼洒,可提高使用效果。由于大多数芽孢杆菌属好气性菌,在施用芽孢杆菌制剂时要注意保持水体中的溶氧量,以更好地发挥其作用。3、硝化细菌3.1
硝化细菌的特性硝化细菌属化能自养菌,专性好氧,大多是专性无机型。硝化细菌可分为2个亚群:亚硝化细菌和硝化细菌。亚硝化细菌将水体中的氨氧化为亚硝酸氮,硝化细菌将亚硝酸氮氧化为对水生动物无害的硝酸氮。硝化细菌是一类自养型生物,尤其是亚硝化细菌,无法利用现成的有机物,水体中无机物太多反而会抑制其生长。与异养性细菌相比,硝化细菌的繁殖周期特别长,因此在水中很难形成优势菌群。3.2
硝化细菌的作用硝化细菌的主要作用是降解水体中的氨氮,如果水体中无机盐类如NH4+等营养元素大量存在,能更好地促进硝化细菌的生长,起到明显的降氨氮效果。3.3
硝化细菌的施用使用硝化细菌有2种方法,一种是应用预先培养附着硝化细菌的生化培养球;另一种是向池中直接泼洒硝化细菌制剂。硝化细菌发挥作用的适宜条件为:pH
值7~9,低于6不利硝化细菌生长;水温在30℃
时活性最高;水中溶解氧对硝化细菌作用影响很大,溶解氧含量高则硝化作用能更好进行。此外,光对硝化细菌的生长繁殖有抑制现象。建议在使用硝化细菌制剂时,要注意水中溶解氧含量及光照强度。4、复合微生态制剂许多学者和生产厂家试图利用不同菌株的不同特性,将多种微生物菌株培育后复合为复合微生态制剂,以期发挥它们的综合效果。但由于不同微生物菌株的生长、繁殖条件不同,同一水质条件能否同时满足所有复合菌株发挥作用,值得进一步深入研究。

蓝藻特殊的生理生态特征,适合在高温环境和强光环境下生长,代谢水平极低;主要捕光天线为藻胆蛋白,能更有效的利用光能。形成水华的蓝藻多数具有伪空泡,这有助于其在水体中的垂直移动,特别是分层水体。这种伪空泡是有许多内空的蛋白膜小体构成,形成了气体载体从而具有悬浮能力,通过光合作用调节蛋白膜小体中的蛋白含量,从而调节其悬浮能力。

4抑制有害的厌氧微生物的活动

二、蓝藻水华发生的外因

5增强养殖水产品免疫力

外因与水体的性质有关,可以是物理、化学和生物方面的。水体富营养化是水体中生物对营养盐浓度升高的响应,而水华则是富营养化过程最为明显的表征。因此,蓝藻生长所需的营养盐浓度是蓝藻水华发生的最重要的化学因素。

2 水中的溶氧量及影响因素

当水体中总磷浓度超过100微克/升,发生水华可能难以避免;

水体中的溶氧是以分子状态溶解于水中,氧气在水中的溶入和解析是一个动态可逆过程,当溶入和解析速率相等时,即达到溶氧的动态平衡,此时水中溶氧的浓度即为该条件下溶氧的饱和含量,即饱和溶氧量。水中饱和溶氧量受到大气氧分压、水温、水中其它溶质含量等因素共同作用的影响。水中的饱和溶氧与大气氧分压呈正相关关系,自然条件下大气氧分压不会有大幅度变化,因此对饱和溶氧量的影响可以忽略。

总磷浓度低于50微克/升时,水华发生的概率大为降低;

溶氧随着水温升高,饱和溶氧量下降;盐度对溶氧也有直接而明显的影响,随着水体盐度升高,饱和溶氧量下降。大多数情况下,养殖水体中溶氧的实际含量低于饱和溶氧量,其数值取决于当时条件下水中增氧与耗氧动态平衡作用的结果。当增氧大于耗氧时,溶氧趋于饱和,有时还会出现“过饱和”现象,这一般会出现在晴天午后,藻类密度高、光合作用强的池塘中;当耗氧占主导地位时,水中溶氧开始持续下降,其结果将会出现低氧甚至无氧水区,此时可能出现养殖动物“浮头”,甚至“泛塘”现象。
在池塘养殖中,水中的增氧主要来源于浮游植物光合作用放氧、人工增氧(机械增氧、化学增氧等)和大气中氧气的自然溶入,但在不同条件下上述几种增氧作用所占的比例也各不相同。

总磷浓度低于30微克/升时,发生蓝藻水华的概率就很小。

富营养型静水池塘以光合作用增氧为主。

氮磷是淡水藻类生长的主要营养元素,当水体中磷质量浓度较高时,氮的质量浓度就相对较低,这时由于多数丝状蓝藻具有固氮能力,因此容易形成丝状蓝藻水华。

高密度精养池塘以人工增氧为主。

蓝藻具有的伪空泡有助于藻类上浮,占据光照条件较好的空间位置,对其他藻类形成竞争光的优势。水华通常发生在天气发生剧烈变化的条件下,多日晴天后突然阴天和闷热天气,导致蓝藻大量浮于水面表层,并在微风作用下堆积聚集。

贫营养型水体及流动水体以大气溶解增氧贡献较大。

当天气条件稳定时,这种堆积聚集可以持续很长世间。

水体中的耗氧作用可分为生物、化学和物理来源的耗氧。

在天气发生变化,特别是大风和大雨天气,这种形成的表层蓝藻浮渣和藻浆很快被破坏,微生物作用加剧蓝藻细胞裂解,细胞大量死亡后,蓝藻毒素随之从细胞中释放进入到水体。

生物耗氧包括动物、植物和微生物的呼吸作用所消耗的溶氧,大多数情况下,水中的浮游生物和底栖生物呼吸耗氧占据池塘耗氧的绝大部分。

三、蓝藻形成的原因

化学耗氧包括环境中,有机物的氧化分解和无机物的氧化还原。

1 环境条件适宜。

物理耗氧主要指水中溶氧向空气中逸散,只占据很小部分,这一过程仅在水-气界面进行。

蓝藻水华多发生在夏季6-9月,有明显的季节性,受温度、阳光、营养物质的影响;温度在20℃以上;水体PH值偏高、光照度强且时间久的条件下,蓝藻形成气囊浮出水面并且迅速繁殖,以至形成蓝藻水华的现象。

3 养殖池塘水体中溶氧的变化规律

2 鱼种放养不合理。

水中溶氧的分布与变化既呈现出复杂多变的态势,又具有相对的规律性。

在施肥量较高且有大量生活水污水排入湖中。水中营养盐类丰富,能促进蓝藻、铜绿微小鱼藻、螺旋藻等大量繁殖。如果此时猎食这些藻类的花白鲢、罗非鱼数量没有或很少。则大量浮草植物会在水中老化死亡腐烂。

1 昼夜变化

水体富营养化程度增加时,浮游植物的生物多样性下降,许多种类因此退出竞争行列。营养盐浓度无疑是造成蓝藻占优势的主要条件,但其他环境因子对于蓝藻水华的发生也至关重要。

在没有人工增氧作用的养殖池塘中,上层水的溶氧昼夜变化十分明显。通常情况,下午高于早晨,白天高于夜间。白天随着藻类光合作用的进行溶氧逐渐上升,至下午日落前达到最大值,夜间由于藻类不能进行光合作用,而各种耗氧作用依然进行,因此水体溶氧会持续下降,至清晨日出前达到最低水平。但随着水层深度的增加,特别是在补偿深度以下,溶氧的昼夜变化也趋于减弱甚至停滞。

四、蓝藻水华出现的条件

2 季节变化

蓝藻水华出现的条件主要可归纳为:

冬春两季温度较低,藻类生长受到抑制,光合作用弱,产生的氧气少,而此时水中生物量低,呼吸作用和化学耗氧下降,因此溶氧相对较低且变化较小。夏秋两季水温高、光照强烈,藻类生长快,光合作用旺盛,释放大量氧气,水体增氧作用明显;但夏秋两季也是水体生物量、粪便、残饵、死亡的动植物尸体等各种有机废物含量最高、耗氧最强烈的季节,因而此时水体溶氧变化大,并会经常出现溶氧过饱和水区,低氧甚至无氧水区等极端溶氧水平,是水产养殖最容易出现溶氧问题的季节。

1)水温上升时蓝藻密度增加是重要原因,蓝藻的最适生长水温相对其他藻类更高;

3 垂直变化

2)蓝藻对低光有较强的适应性,当水华发生时,水体透明度下降,严重制约其他种类生长,形成了更利于蓝藻的生长条件;

溶氧在水中的分布呈现出从上到下垂直递减状态,藻类只能在有光线的水层中生长并进行光合放氧,而耗氧作用却在每一个深度都不停地进行,从而使水体溶氧形成上层高、下层低、非均匀递减的垂直分布,这种现象常见于高温季节的深水池塘。

3)蓝藻在高pH值条件下对低二氧化碳有超强的吸收能力。在富营养化水体中,浮游植物的光合生产量很高,导致水体的二氧化碳浓度下降,pH值上升,蓝藻从而具备了很好的竞争能力;

4 低氧对动物的危害及其行为反应

4)低氮/磷比对蓝藻的限制作用不是很大,它们本身具有利用不同类型氮盐的能力,低氮可诱导蓝藻的固氮能力;

当水中溶氧不足时,首先直接对养殖动物产生不利影响;其次是通过影响水体环境其它生物和理化指标而间接影响养殖动物,致使其生长、繁殖甚至生存造成不同程度的危害,轻则体质下降、生长减缓,重则浮头、泛塘,导致大量死亡。

5)很多蓝藻能够从底泥中迁移到水体中,并大量积累细胞内的磷含量,这也是其他藻类所不具备的优势;

(1)临界溶氧和致死溶氧

6)蓝藻对微量元素的需求量很小;

水中溶氧低于某一水平时,养殖动物的生理代谢和生长开始受到不利影响,但并不会导致死亡,这时的溶氧浓度称为临界溶氧。若溶氧继续降低,到不能满足生理上的最低需要时,养殖动物会因窒息而死亡,此时的溶氧浓度称为致死溶氧。临界溶氧和致死溶氧依动物种类和规格不同而异,并且受到水温、盐度等其它环境因子的影响,例如,随着水温升高动物的致死溶氧下降。

7)微囊藻具有气囊的种类,对稳定分层的水体有较强的适应能力;

(2)动物对低氧的行为反应

8)蓝藻通常会产生大量有机化合物一直其他藻类生长;

当水中溶氧稍低于临界水平时,养殖动物开始表现出摄食下降、生长减慢、饲料系数增加,虾类脱壳频率降低,且经常在浅水区活动;动物经常群集在增氧机附近。长时间持续低氧会降低动物对环境胁迫和对疾病的抵抗力,常常导致应激性疾病的发生。在接近致死溶氧时,养殖动物将停止采食,因呼吸困难而大批游到水面吞取空气,发生严重的“浮头”现象。此时鱼虾运动活力很低,对外界刺激反应迟钝。高密度养殖条件下,如果浮头发生在上半夜或午夜刚过,表明水体严重缺氧,应及时采取补救措施,否则会造成鱼虾大批死亡,甚至泛塘。

9)一些蓝藻能够产生毒素,能明显减少动物摄食;

5 池塘养殖中的溶氧管理

10)蓝藻对硅藻有较强的化感作用,抑制硅藻生长,从而加速水体从中等营养水平向富营养化的转化。

溶氧管理是池塘养殖水质管理的一个重要内容,是一项以动物的溶氧需求为基础、以观察和测定为依据,以预防为主、各种措施综合应用的系统工程。在实际生产中,水中溶氧水平是否合适不能以鱼虾是否浮头为标志,而应以保证鱼虾正常生理需求为标准。我国渔业用水标准规定,养殖水体溶氧连续24小时中,必须有16小时以上大于5
mg/l,任何时候不能低于3mg/l。

由于并非所有的水华蓝藻均具备上述特征,还难以确定一个特定蓝藻形成水华的真正原因,一个特定水体在具体的时间点上是否会发生蓝藻水华还无法准确预测。

养殖生产中,溶氧管理实质上就是通过采取各种直接或间接的增氧措施,既能保证养殖动物处于一个良好的溶氧环境、达到最佳生产效益,又不至于过度增氧导致成本浪费。从整个养殖过程和环节来讲,可从以下几方面着手。

蓝藻水华的发生除了与水体中营养盐水平及其生理特征直接相关外,还与水体的水动力学条件有关,不同蓝藻水华类型具有不同的发生机制和触发条件。在不同的水体中优势蓝藻种类不同,这是生态系统特征的选择结果。

(1)加强池底清淤消毒 合理安排放养密度

五、蓝藻水华的危害特点

在条件许可的情况下,应在每两茬养殖生产之间干塘清淤,用生石灰对池底进行消毒并暴晒。这样既可杀灭病原生物,降低养殖过程中感染病害的风险,又可氧化底泥中的有机物,除去池底的氨氮、亚硝酸盐等有害物质,减少养殖过程中的底泥耗氧,起到间接增氧作用;同时还可以提高水体的硬度和碱度,增加水体缓冲能力,有助于保持养殖过程中水质的稳定性。在投放苗种时应根据养殖种类、水体条件、进排水能力、设备配置、管理水平以及期望的产量和规格等合理安排放养密度。过高的密度将会导致动物个体之间的“争氧”,降低了生产率,经济效益反而有可能下降,同时还会增加管理难度和风险。

1
蓝藻很难消化,造成水体富营养化。在一些营养丰富的水体中,由于难以消化所以很多鱼类不吃。有些蓝藻常于夏季大量繁殖,并在水面形成一层蓝绿色而有恶臭味的浮沫,称为“水华”,大规模的蓝藻爆发,被称为“绿潮”(和海洋发生的赤潮对应)。绿潮引起水质恶化,严重时耗尽水中氧气而造成鱼类的死亡。

(2)选择优质饲料 采用科学投饲技术

2
蓝藻水华引起水体生物多样性急剧降低。蓝藻大量繁殖恶化了水中的通风、光照、缺氧;导致水中浮游生物的生长繁殖,从而阻碍水藻的光合作用。减少了鱼类的生存空间,使与池中的丝状藻和浮游藻等不能合成本身所需要的营养而导致死亡

一般情况下,粪便和残饵是精养池塘中有机污染的最大来源,有机物降解过程会消耗大量氧气。投喂营养不平衡的单一原料或低质饲料,由于适口性不佳且消化不充分,将导致池塘中粪便和残饵增加;而优质饲料的消化吸收率高,粪便等废物排量少,从而间接增加水体溶氧。科学的投饲技术同样重要,应根据天气、水质、动物的摄食和生长等情况严格控制并随时调整投饲量,宜少量多次,避免过量投喂产生残饵。在养鱼池塘使用投饵机以及投喂膨化浮性颗粒饲料也有助于减少残饵。

3
蓝藻大量繁殖导致水体缺氧,水质变坏。由于缺氧甚至无氧且水质变坏,蓝藻中有些种类(如微囊藻)还会产生毒素(简称MC),大约50无的绿潮中含有大量MC。MC除了直接对鱼类、人畜产生毒害之外,是强烈的致癌物质,也是肝癌的重要诱因;直接威胁着人类的健康和生存;而且MC耐热,不易被沸水分解,但可被活性碳吸收,所以可以用活性碳净水器对被污染水源进行净化。

(3)控制藻类生长繁殖 提高天然增氧效果

另经研究证实,氮和磷是藻类生长的主要限制营养元素,当水体中这两种元素过量增加时,富营养化过程是迅速的;而对淡水水体而言,磷是藻类生长的主要限制因子。自然界中水体的无机磷来自土壤,不能被生物合成,只能通过生物的转化得到。而氮则有更丰富的来源,其主要存在于大气中,生物可通过固氮来转化氮,蓝藻中许多种类都具有这种固氮能力,因此蓝藻能够在水体缺氮时从大气中合成有机氮。水体中的二氧化碳是蓝藻光合作用生产的主要原料,大气中的二氧化碳可通过溶解的气体进入水体,蓝藻具有高度浓缩二氧化碳的机制和能力。

浮游植物光合放氧是池塘水体溶氧的重要来源,很多情况下甚至是最主要的来源,但过盛繁殖的藻类夜间会因旺盛的呼吸作用而大量消耗水体溶氧,产生严重后果。因此,应采取生物和化学等多种调控措施保持水中合适的藻类密度,到达理想的增氧效果。实际生产中藻类密度具体测定并不方便,根据水色和透明度来直观判断比较有效。不同的池塘条件和不同的养殖对象及养殖阶段,对水色和透明度的要求有所差异,但总的来说,保持嫩绿或浅褐水色以及25~40
cm的透明度是比较合适的。

由于碳、氮和磷的来源和利用上的差别,蓝藻生长的制约因素主要是磷元素,只有当磷的浓度合适时,蓝藻水华才会发生,同时这也决定了控制水体中的磷在蓝藻水华和富营养化控制中的实际意义和可操作性。由于影响蓝藻水华发生的条件还取决于水体的物理条件和生物条件,因此磷浓度相同的水体不一定都会发生蓝藻水华。

(4)掌握水中溶氧动态 灵活进行人工增氧

在高密度池塘养殖中,人工增氧是养殖成功的必备条件,也是养殖成本中除饲料以外的最大部分。出于对电耗成本的考虑,以及对低氧潜在危害的认识不足,很多养殖者对增氧机的配置和使用并不合理,很多时候把人工增氧当作一种“救命”措施。科学的做法是在了解养殖动物溶氧需求和水中实际溶氧水平的基础上,灵活启用人工增氧,既保证了水体中合适的溶氧水平,又避免了因不必要的过度增氧而造成的成本浪费。

机械增氧是人工增氧的最主要方式,其核心部分是增氧机,主要有搅拌式(如水车式增氧机、叶轮式增氧机等)和充气式(如射流式、曝气式)两类,各有优点,应根据不同养殖条件分别选用或混合使用。开动增氧机可促进水体流动和水质均匀化,增加水中的溶氧量、散发水中的有毒气体。开机时间长短也应根据水体特别是底层、中层水体的溶氧水平而定。在用电不方便的地方或应急情况下,化学增氧剂的使用也是十分必要的。

(5)清除野杂鱼虾 适时进水排污

池塘中非养殖动物不可避免地与养殖动物在营养和水体环境方面产生竞争,从而造成营养流失、环境恶化等危害,包括降低水体溶氧。应尽可能在放养前杀灭池塘及水源带来的野杂鱼虾,并在养殖过程中进行清除。如果条件具备,应经常补充新水,同时进行排污。注入新水可以及时而有效地改善水体溶氧,但需要注意的是注入的水应是没有污染、溶氧高,温度和盐度等与现有池水接近的新鲜水,否则会引进新的污染或造成动物的胁迫效应。

(6)及时明察环境变化 预防突发溶氧事故

水产养殖中,一方面天气变化具有不确定性和不可控制性,水环境本身也在时刻发生变化,同时天气又对水环境产生重要影响;另一方面水体温度、盐度、pH值等环境因子短时间内的剧烈变化又会对养殖动物产生胁迫效应。实际生产中这种变化是不可避免的,因此只能在养殖过程中加强管理,及时明察,尤其是高温闷热和暴雨、强风天气应做好应急措施,预防和处理突发的溶氧事故。

另请参阅:

影响水体中溶解氧含量的条件和四种情况下的变化

影响水质好坏的三大件—水温、酸碱度和溶解氧

解析:鱼类的浮头和泛池

对养鱼池塘条件及水质选择的思考

鱼类缺氧的三种形式—无氧性缺氧、生物缺氧、组织(器官)缺氧

正确分析鱼类缺氧浮头的先兆与及时应采取的防控措施

鱼类缺氧的诱因及原因和浮头危险程度的判别

正确分析与及时防控—鱼儿缺氧浮头的综合防治

鱼浮头不都是缺氧惹的祸!

起因不同,防治方法也各异!“缺氧”浮头和“硫化氢中毒”浮头(第379期)

鱼缺氧浮头的防止办法和防止措施(第384期)

暴雨前后水体缺氧的原理以及应对措施

判断养殖水体是否处于缺氧与亚缺氧状态的六个方法

鱼池缺氧又遇停电的应对措施

通过“三看”区分鱼池药害和泛塘!缺氧是养鱼的死敌,鱼病更是养鱼的天敌。缺氧和鱼病是养鱼的万恶之源!

更多信息请登录点击网站,了解更多哦~~~