1、増氧机的配备原则

关键在PH值

藻类是一个生态学概念,目前世界上已发现的淡水藻类约25000种,中国约9000种。藻类是池塘生态系统中的初级生产者,它能够利用光能通过光合作用合成有机物,为其他生物提供饵料来源,因此对水体物质循环和能量流动有着重要作用。另一方面,它通过光合作用产生大量氧气,对国内淡水高产鱼塘的研究表明,通过藻类光合作用产生的氧气占池塘溶氧的86%。藻类与水环境之间相互作用,能够反映水体营养盐情况,因此也把藻类作为水质监测的重要指标。

增氧机的选配原则是既要充分满足鱼类正常生长的溶氧需要,有效防止缺氧死鱼和
水质恶化降低饲料利用率和鱼类生长速度,引发鱼病现象的发生,又要最大限度地降低运行成本,节省开支。因此,选择增氧机应根据池塘的水深、不同的鱼池面积、养殖单产、增氧机效率和运行成本等综合考虑。

氨氮的危害关键取决于水体pH变化,当水体偏碱的时候,几乎全部为分子态氨氮,是有毒性的,小龙虾会产生爬边爬草,实际上是一种潜在的中毒症状;

一、影响水中藻类群落结构的因素

据测定,每千克鱼每小时耗氧总量约为1.0g,其中,生命活动耗氧约为0.15g,食物消化及排泄物分解耗氧约为0.85g。以10亩(6667m2)面积的精养鱼池为例,增氧机的配备见表6-1。

当水体偏酸的时候,几乎全部是没有毒性的离子态氨氮,所以,不是所有的氨氮都都对于小龙虾种苗有害,也并不是只要氨氮高就一定是危险的水质。

对于藻类的群落研究,大部分是从水体中采集样品经过镜检后确定其种类组成、优势种、密度和生物量,从而得到其群落结构及多样性等变化,并探讨藻类在水体中的作用机制以及与水环境因子的相互关系等,以利用浮游生物对池塘水坏境进行监测及调控,为养殖鱼类提供良好的生长环境。不同的生物种类构成了不同的生物群落,群落的种类组成是决定群落性质的一个重要特征,鉴别物种的种类组成能够反映该群落的结构特征,是研究群落的基础指标。

2、增氧机的配备

底肥与表肥

目前,对水生生物多样性的分析方法主要有:香农-威尔指数、马格列夫指数和均匀度指数。一般分析时多釆用香农-威尔指数,但由于一种生物多样性指数对研究浮游生物多样性存在缺陷,导致结果出现偏差,因此在实际分析研究中,很多学者都同时使用香农-威尔指数和均匀度指数。

确定增氧机的装载负荷

水质分析盒检测得出水体氨氮偏高,说明了水体的营养物质丰盛,也就是水体本不缺乏氮肥。

此外,特征色素分析法、特征脂肪酸以及一些分子微观手段例如应用DNA指纹技术也被应用于藻类群落结构的研究。

确定装载负荷一般考虑水深、面积和池形。长方形池以水车式最佳,正方形或圆形池以叶轮式为好;叶轮增氧机每千瓦动力基本能满足3.8亩增氧机的安装位置

但是,很多虾塘表现出来的就是底肥很好,但是,表层肥不起来,也就是藻类并不是很好。

影响藻类群落结构变化的因素主要包括光照、水温、透明度、溶氧、营养盐、有机物、浮游动物及养殖模式等,不同的环境会导致藻类的种类组成表现出差异,另一方面藻类的生长繁殖也会对水体环境造成一定的影响。

增氧机应安装于池塘中央或偏上风的位置。一般距离池堤5
m以上,并用插杆或拋锚固定。安装叶轮增氧机时应保证增氧机在工作时产生的水流不会将池底淤泥搅起。另外,安装时要注意安全用电,做好安全使用保护措施,并经常检查维修。

氮肥太单一

1.光照

3、增氧机的使用原则

猪粪塘、鸭粪塘,测出来的氨氮明显偏高,但是水质却偏瘦,主要问题的关键是,藻类繁殖不仅需要氮肥,还需要磷肥与钾肥,达到一定的比例,才可以被吸收利用。

藻类吸收光能进行光合作用,光照强度和光照时间会影响藻类的生物量、密度。适宜的光照强度是藻类生长繁殖的基础。不同藻类利用的最适光照强度不同,有研究表明微囊藻适宜低光照,而栅藻适宜较高的光照强度,因此,藻类因光照需求的差异往往表现出水层分布的差异。

增氧机的使用应按照水中溶氧变化规律和增氧机的作用,科学地确定开机时间和机器的运转时间。要坚持晴天中午开,阴天清晨开,连绵阴雨半夜开,傍晚不开,浮头早开的原则;运转时间要根据天气、水质、鱼虾的浮头情况和增氧机负荷面积等情况确定开机时间的长短。对无增氧设施的池塘,应配备一些增氧剂以防应急时使用。

否则,只能逐渐沉积。其危害表现为氨氮偏高,一旦水体碱性偏高,就会导致有毒性的分子氨氮对于小龙虾造成危害,这就是其中的利害关系。

2.溶解氧

4、增氧机安全操作注意事项

所以,我们近阶段依旧提出降碱不降氨的说法。

水体中溶氧量与藻类呈显著正相关。淡水养殖水体的溶解氧有86%来自于藻类光合作用,海水养殖池塘91.3%~100%的溶解氧来自于光合作用。对水体耗氧研究表明,处于迅速生长的藻类,每天呼吸耗氧量为其产氧量的10%~20%,对池塘水呼吸耗氧的调查显示,藻类占水呼吸耗氧19.1%,浮游动物占23.5%,细菌耗氧占57.4%。

(1)增氧机采用380V三相交流电,电源一定要使用专用电路,接电要由专业电工按
照用电安全操作规程进行。

氨氮偏高

3.透明度

(2)电动机必须安装漏电、断相、欠压保护装置,保证电路工作正常。

当水质检测氨氮偏高时候,首先检测水体酸碱度,如果水体偏酸,可以用磷酸二氢钾加EM菌加芽孢菌先后泼洒,几天后可以很快将氨氮吸收降解;

透明度是指光透入水中的深浅,与藻类的生长繁殖也息息相关。透明度取决于水体浮游生物和悬浮物的量,所以在一定程度上可以反映水体中藻类的多少。

(3)电源线应采用三相四线铜芯橡胶电缆,推荐线径为4×2.5mm2,接线要牢固,
接地要可靠。

水体偏碱

4.营养盐

(4)输入电源电压为380V,电压波动值不超过额定电压的±5%,以防欠压,长期
使用损坏电动机。

如果检测水体偏碱,首先使用有机酸解毒剂,全池解毒,降低酸碱度,之后用磷酸二氢钾加EM菌加芽孢菌先后泼洒,几天后同样可以很快将氨氮吸收降解。

营养盐是养殖水体藻类的物质来源,在其他水环境因子适宜的情况下,藻类生物量取决于水中营养盐含量,不同营养水平的水体藻类的组成、优势种、生物量等表现出不同的特征,一般藻类的生物量、密度等会随营养物质的增加而增加,而且基本上蓝藻会形成优势种群,绿藻、硅藻的数量也会较多。一般来说,当有效氮的浓度在0.03~1.3mg/L之间,有效磷的浓度保持0.04~0.05mg/L时,藻类的生物量会增加。

(5)严禁使用铁丝等金属线拉接固定增氧机。

在氨氮偏高的时候,很多人喜欢使用各种氧化剂,实际上这种方案只适用于平时预防,避免各种有机质沉积,有很大的帮助。

实际生产中,养殖水体由于养殖密度大,投料频繁,代谢废物积累而影响鱼塘水质,通常在养殖中后期,由于投饵、施肥及水体中养殖动物的排泄等原因,有机物不断积累,水体氮、磷等营养盐过量而造成水质恶化,亚硝酸盐含量严重偏高。藻类群落的变化与水体中各项理化因子的变化有密切关系,藻类通过吸收营养盐,加速水中氨氮、亚硝酸盐、氰化物等有毒物质的氧化,降低其含量,因而藻类在一定程度上可作为水质改良剂来改良养殖鱼塘的水质。

(6)维护、保养、搬运增氧机或拆装电动机时,必须先切断电源,保证人身安全。

当前水体环境往往是超负荷的,整个水体环境基本上是还原性的,也就是说,投入再多的氧化剂,也无法改变强大的还原体系,只能缓解水体环境的进一步恶化,确保小龙虾活动正常。

5.浮游动物

(7)增氧机开机时,严禁任何人下鱼塘,以防触电和机械事故的发生。

氨氮高危害

浮游动物的捕食是影响藻类群落结构的重要因子,它能够通过控制藻类的生物量,从而影响水体的初级生产量。不同种类的浮游动物喜食藻类的种类大小不同,例如研究发现哲水蚤的食物主要来源是鱼腥藻,这就造成了浮游动物和藻类群落结构之间的相互影响。

氨氮偏高水体危害严重需更加高度重视

(哲水蚤)

水产养殖水质优劣程度的衡量只能以离子态铵(NH﹢4–N)和非离子态氨(NH3–N)两种形态来判定。

水体中藻类生物量的不同会使浮游动物的群落组成有所差异:例如有研究表明在藻类生物量较高的水体中,尤其是小型单细胞藻类丰富的水体,枝角类由于喜食单细胞藻类而易形成优势种;在藻类贫瘠的水体中,哲水蚤由于能更有效地摄食藻类而占优势。另一方面,藻类对浮游动物的摄食也会产生相应的抵御机制,例如蓝藻、绿藻通过增大自身的体积、数量,紧密的连在一起,使其难以被浮游动物滤食;一些种类的藻类甚至在长期进化中形成了分泌有毒物质的机制来抵御被摄食。

例如在酸性水体,离子态铵(NH﹢4–N)受高温高压的影响转化成亚硝酸氮(NO2¯-N),这会降低水生动物血液的输氧功能,使水生动物机体代谢功能下降。

6.养殖模式

氨离子危害

我国大宗淡水养殖鱼类主要包括青鱼、草鱼、鲢、鳙、鲤、鲫等。其中,鲢和鳙是滤食性鱼类,分布于水体的中上层,鲢主要以浮游植物为食,鳙则主要摄食浮游动物。此外,鲢鱼也能滤食部分浮游动物,研究发现,鲢鱼能够滤食原生动物、轮虫和逃逸能力较弱的枝角类,对逃逸能力较强的桡足类,主要靠滤食其无节幼体来抑制桡足类的生长。因此,放养鱼类苗种的不同也导致了水体浮游生物不同的种群结构。

另外不带电非离子态氨(NH3–N)与水产动物机体组织亲和力特别强,可破坏上皮组织结构,使机体肿胀,细胞坏死,血淋巴流失。

鲢鱼的滤食作用能够加快养殖水体的物质循环速率和养分的周转率,从而使藻类的生长增加。在实际生产中,一般将草鱼和鲢、鳙进行混养,一方面可以充分利用养殖水体的空间资源和食物,另一方面,三者间的协同作用,可以改善养殖环境并增加鱼类产量。鲤、鲫食谱广而杂,属于底层杂食性鱼类,既吃动物性食物,又吃植物性食物,动物性饵料以轮虫、摇蚊幼虫以及甲壳动物(枝角类和桡足类)等为主,植物性食物则以浮游植物硅藻类、丝状藻类等及其碎屑为最主,对水质有一定的净化作用,能使底栖无脊椎动物的丰度大幅度降低,藻类生物量和水体初级生产力增加。

氨还会刺激胃肠整个消化系统的粘液细胞,使之分泌大量的粘液,造成消化不良,容易引起厌氧菌感染而患痢疾肠炎病,(这时饲料大量添加黄连素原粉2g/Kg饲料)。

二、藻类对养殖动物的影响

离子态氨(NH4–N)会抑制体内钠离子的运输,阻止排泄物(NH3)的排泄,引起机体渗透压失调,降低血液输氧功能而逃死。

1.藻类为养殖动物提供氧气和良好的环境

总之,只要养殖池塘存在氨氮偏高水体必然存在对水生动物毒性很大氮化合物,它们不仅能影响水产动物免疫系统。

养殖动物的生存离不开氧气的供应,藻类的光合作用为养殖动物的存活和生长代谢提供了充足的氧气。藻类在一定程度上能净化养殖水质,有研究表明硅藻和绿藻具有吸附有害物质、保持水质“爽、活”的作用,可用来构建优良藻相,从而达到改善水质的目的。

水体离子

(西施舌幼贝)

还会降低机体的抗病能力。因此在养殖过程中要求氨氮总量不超0.3mg/L。

在西施舌幼贝养殖中引入固定化微藻后发现,实验组水体中的氨氮和亚硝酸盐明显低于对照组;有文献也报导了底栖藻类对水体中的氮、磷有明显的去除效果;稳定的波吉卵囊藻和微绿球藻不仅可以提高水中的溶氧含量,还能降低水中的氨氮、亚硝酸盐等有害因子的浓度,从而达到净化污水和保持良好水环境条件的作用。

虽然氨氮能作为浮游植物氮能量源,它擅长促进大型藻类(蓝藻)及水草生长,但是水体有益浮游植物繁殖生长习性讲究的是氮(N)、磷(P)、钾(K)、钙(Ca)比例协调。

藻类的生长繁殖有改善底质的作用,生活在底层的藻类其光合作用可为底泥中的细菌提供氧气,促进其分解底泥中的有机质,从而间接地改善底质。另外,藻类的繁殖可消耗底泥中过多的氨氮,从而净化底质。

否则氨氮偏高水体会造成有益浮游植物伤肥而倒藻死亡,引起水体离子氧吧不足而缺氧。或者还会进一步促进水体单一性蓝藻的大量生长引起赤潮。

一滴海水中的新月藻、硅藻和水棉

(肥水专家)

2.藻类为养殖动物提供饵料

藻类特别是微藻含有丰富的蛋白质和氨基酸,是很好的蛋白质来源。有研究表明,螺旋藻的粗蛋白含量高达69.3%,且氨基酸的种类齐全,且由于其细胞壁纤维素含量很少,其所含蛋白质很容易被动物消化吸收。微藻的脂肪含量也很高,检测得到20种微藻脂肪含量大都超过15%,其中金藻门的含量一般均在20%以上。且所含的脂肪酸中有很大一部分为多不饱和脂肪酸,它们是许多水产养殖生物幼体存活和发育的必需脂肪酸,如硅藻门含有丰富的二十碳五烯酸,金藻门含有丰富的二十二碳六烯酸。藻类还含丰富的维生素和微量元素,如生物素,叶酸,钙、镁、铁、锰、铜和锌等,它们是参与养殖动物的新陈代谢中许多酶的辅助因子。

(凡纳滨对虾)

3.藻类可在一定程度上增强养殖动物的抗病能力

有研究表明在凡纳滨对虾养殖水体中引入波吉卵囊藻和微绿球藻,发现对虾的血细胞数目、血清蛋白含量以及酚氧化酶、超氧化物歧化酶、溶菌酶、抗菌酶的活性都较对照组有显著提高。对小球藻的研究表明:小球藻中含有的小球藻生长因子能激活淋巴细胞,增强水生动物机体免疫能力。

藻类的生长可抑制致病菌的生长,从而间接地提高养殖动物抗病能力。研究认为,微藻由于体积小,生长迅速,与水中不良微生物竞争可优先占得生态空间,从而抑制不良微生物例如弧菌的滋生,提高养殖动物免疫力;另一方面,藻类能产生抗生素类物质,可以杀死水中的致病菌,提高养殖动物的免疫力和抗病力。

三、藻类对养殖动物的危害

有些藻类的生长繁殖是对养殖动物有危害的。研究发现一些甲藻在繁殖过程中,可产生多种神经毒素,引起养殖鱼体的神经麻木、代谢失调及呼吸障碍,严重时可导致死亡。

(裸甲藻)

水体中的青泥苔和水网藻大量繁殖时,因消耗水体中的养分使水质变得清瘦,也可导致养殖鱼类特别是苗种被缠绕致其呼吸困难或者无法摄食而死亡。

(青泥苔)

养殖鱼塘三毛金藻中毒的鱼体,大多停留在四角及浅水池边,头朝岸边整齐排列,在水下静止不动,无浮头现象,受到惊吓也没有反应;观察死亡鱼体,可见鱼体体表鳍基部充血,鱼体后部颜色变浅;鳃内有大量粘液,鳃丝轻度腐烂;解剖鱼体后发现其肠道无食,无明显病灶。

(三毛金藻)

有的藻类其死亡后分解会产生有害物质,如微囊藻死亡后,其蛋白质分解产生的有毒的羟胺和硫化氢会毒死鱼类。此外,藻类如若大量繁殖,然后迅速衰败,死亡的藻类会在底部不断积累,其腐烂分解会消耗水中大量的氧气,使水体特别是底部严重缺氧,对养殖动物造成不利的影响。1、来源:《中大水生通讯》第58期2、作者:广州市诚一水产科技有限公司
白小丽/文

(来源:《中大水生通讯》 配图:西南渔业网)

(内容和段落略有调整)

相关文章:

高清图谱(上):水体浮游生物—浮游动物29种

高清图谱(中):水体浮游生物—绿藻门以外的浮游植物51种

高清图谱(下):水体浮游生物—绿藻门浮游植物46种